A Stochastic View of Optimal Regret through Minimax Duality

نویسندگان

  • Jacob D. Abernethy
  • Alekh Agarwal
  • Peter L. Bartlett
  • Alexander Rakhlin
چکیده

We study the regret of optimal strategies for online convex optimization games. Using von Neumann’s minimax theorem, we show that the optimal regret in this adversarial setting is closely related to the behavior of the empirical minimization algorithm in a stochastic process setting: it is equal to the maximum, over joint distributions of the adversary’s action sequence, of the difference between a sum of minimal expected losses and the minimal empirical loss. We show that the optimal regret has a natural geometric interpretation, since it can be viewed as the gap in Jensen’s inequality for a concave functional—the minimizer over the player’s actions of expected loss—defined on a set of probability distributions. We use this expression to obtain upper and lower bounds on the regret of an optimal strategy for a variety of online learning problems. Our method provides upper bounds without the need to construct a learning algorithm; the lower bounds provide explicit optimal strategies for the adversary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness in portfolio optimization based on minimax regret approach

Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...

متن کامل

Batched Bandit Problems

Motivated by practical applications, chiefly clinical trials, we study the regret achievable for stochastic bandits under the constraint that the employed policy must split trials into a small number of batches. We propose a simple policy that operates under this contraint and show that a very small number of batches gives close to minimax optimal regret bounds. As a byproduct, we derive optima...

متن کامل

A minimax and asymptotically optimal algorithm for stochastic bandits

We propose the kl-UCB algorithm for regret minimization in stochastic bandit models with exponential families of distributions. We prove that it is simultaneously asymptotically optimal (in the sense of Lai and Robbins’ lower bound) and minimax optimal. This is the first algorithm proved to enjoy these two properties at the same time. This work thus merges two different lines of research with s...

متن کامل

An adaptive algorithm for finite stochastic partial monitoring

We present a new anytime algorithm that achieves near-optimal regret for any instance of finite stochastic partial monitoring. In particular, the new algorithm achieves the minimax regret, within logarithmic factors, for both “easy” and “hard” problems. For easy problems, it additionally achieves logarithmic individual regret. Most importantly, the algorithm is adaptive in the sense that if the...

متن کامل

Minimax Policies for Bandits Games

This work deals with four classical prediction games, namely full information, bandit and label efficient (full information or bandit) games as well as three different notions of regret: pseudo-regret, expected regret and tracking the best expert regret. We introduce a new forecaster, INF (Implicitly Normalized Forecaster) based on an arbitrary function ψ for which we propose a unified analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0903.5328  شماره 

صفحات  -

تاریخ انتشار 2009